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We want to know which map is better

Response to the risk of degradation of the landscape
(Loulouka Basin, Burkina Faso)

A/ by loulouka shp

Previous state New state

Evolution for the better or the worse?
Need of a model for comparing decision maps
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Modelling contiguity in spatial decision contexts
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Comparing maps is a multi-criteria problem

S: territory composed of pixels

s € S: pixel

~(s): evaluation of s on a common scale for all pixels
C={G,...,C,}: the common evaluation scale, composed of n
categories

A= (S,~): evaluated geographic map (= decision map)
A: set of evaluated maps
7= preference relation on A
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Comparing maps is a multi-criteria problem

S: territory composed of pixels

s € S: pixel

~(s): evaluation of s on a common scale for all pixels
C={G,...,C,}: the common evaluation scale, composed of n
categories

A= (S,~): evaluated geographic map (= decision map)
A: set of evaluated maps
7= preference relation on A

Comparison with a MCDA problem

maps = alternatives
evaluations associated with the pixels = criteria

Remark: common evaluation scale for all pixels = commensurable scales
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© Comparing maps in a basic way
© Taking geographic aspects into account

© Taking contiguity into account
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Model 1:

Comparing maps in a basic way
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Comparing maps in a basic way

We use an expected utility model

Expected utility model

A=(S,7),B = (S,9)

A% B = © Y u((s) > 1 3 u(i(s))

seS sES

with v(s) € {Gy, ..., C,} and N is the total number of pixels
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Comparing maps in a basic way

We use an expected utility model

Expected utility model
A=(S,7),B=(S,9)

A% B = © Y u((s) > 1 3 u(i(s))

seS sES

with v(s) € {Gy, ..., C,} and N is the total number of pixels

Rewriting the expected utility model
u(y(s)) = u; if ¥(s) = G;

| A

xi(A) = lsesae=C)]

A ?\: B «— Zn:X,'(A)U,' > ZH:X,'(B)U,'
i=1 i=1

A,
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Comparing maps in a basic way

The model assumes that the region is homogeneous

We assume that the whole region is homogeneous:
x(A)=x(B)=A~B

with x(A) = (x1(A), x2(A), ..., xn(A)) the area distribution in categories
of map A
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Comparing maps in a basic way

Are these two maps really indiff

@ Model 1 assumes that the region is homogeneous

/. Hyd1_oy_loulouka.shp
Adequate

[ Mod. Adeguate

[ Wealdy Adeauate

I vt g

1 Kiomater

o 1 Kiometsr
—

Figure : State 1 Figure : State 2
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Comparing maps in a basic way

Are these two maps really indifferent?

@ Model 1 assumes that the region is homogeneous

A\ H_ by oulauka.shp

Figure : State 1 Figure : State 2

@ Model 2 assumes that the region is composed of several
homogeneous sub-regions (defined by a geographic aspect)
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Taking geographic aspects into account

Model 2:

Taking geographic aspects into account

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Taking geographic aspects into account

We generalize the expected utility model

AL B = Y > xi(Au(Ey) = > > xi(B)ui(Ey)

j=1 i=1 j=1 i=1
where

j is the homogeneous sub-region
i is the category

xij(+) is the proportion of the surface of region j assigned to category
i

uj(Ej) is the utility associated with the homogeneous sub-region j
entirely assigned to category i
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Taking geographic aspects into account

We generalize the expected utility model

AL B = Y > xi(Au(Ey) = > > xi(B)ui(Ey)

j=1 i=1 j=1 i=1
where

j is the homogeneous sub-region

i is the category

xij(+) is the proportion of the surface of region j assigned to category
i

uj(Ej) is the utility associated with the homogeneous sub-region j
entirely assigned to category i

We assume that comparing maps only depends on the comparison of the
area distributions of the homogeneous sub-regions: for all A, B, C, D, if
A B, xi(A;) = x(G) and x;(B;) = x;(D;) for all j, then C 2z D

with x;(-) = (x1;(:), . - -, Xnj(+))
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Taking contiguity into account

Taking contiguity into account
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/A H_by_lououka sho
[ sdecuae

] Mod Adequate
[ Wealdy Adequate
I ot Adequate

0 1 Kiemeter
—

Figure : Scattered map

A/ ot by_loulouia.shp

[ dequae W ®
] Mod Adequate

] Wealdy Adequate s
I ot Adequate

N

0 1 Kiometer [
—

Figure : Clustered map
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Taking contiguity into account

p=

Are these maps really indifferent?

Comparing maps

h the Choquet integral
C t integral

Same distribution

A/ H_by_louloutka sh A/ ot by_loulouia.shp

[ sdecuae W e [ Adequae

] Mod Adequate ] Mod Adequate
[ Wealdy Adequate H ] Wealdy Adequate
I ot Adequate I ot Adequate

0 1 Kiemeter 0 1 Kiometer
— —

N

Figure : Scattered map Figure : Clustered map

= Model based on the Choquet integral
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Taking contiguity into account

The Choquet integral

No interaction:

M. Pirlot Modelling contiguity in spatial decision contexts



Taking contiguity into account

The Choquet integral

No interaction:

Pairwise interactions

Y om{sHu(x(s) + > m({s, t}) min(u(r(s)). u(+(t)))

seS s,teS
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Taking contiguity into account

The Choquet integral

No interaction:

> m({s}Hu(y(s))

seS

Pairwise interactions + triple interactions

Y om{sHu(x(s) + > m({s, t}) min(u(r(s)). u(+(t)))

seS s,teS

+ > m({r,s,t}) min(u(y(r)), u(+(s)), u(x(1)))

r,s,teS
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Taking contiguity into account

The Choquet integral

No interaction:

> m({s}Hu(y(s))

seS

Pairwise interactions + triple interactions + - - -

Y om{sHu(x(s) + > m({s, t}) min(u(1(s)). u(+(t)))

seS s,teS
+ ) m({rs, e}y min(u(+(r)), u(~(s)), u(~(t)))
r,s,tes
+
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Taking contiguity into account

The Choquet integral

No interaction:

> m({s}Hu(y(s))

seS

Pairwise interactions + triple interactions + - - -

Y om{sHu(x(s) + > m({s, t}) min(u(1(s)). u(+(t)))

seS s,teS

+ ) m({rs, e}y min(u(+(r)), u(~(s)), u(~(t)))
r,s,tes

_|_

Choquet integral:

Cr(u(y(s1)),-- - u(y(sm)) = > m(Y)minu(+(s))

YC{1L,...N}
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Taking contiguity into account

The Choquet integral

No interaction:

> m({s}Hu(y(s))

seS
Pairwise interactions + triple interactions + - - -

Y om{sHu(x(s) + > m({s, t}) min(u(1(s)). u(+(t)))

seS s,teS

+ ) m({rs, e}y min(u(+(r)), u(~(s)), u(~(t)))
r,s,tes

_|_

Choquet integral:

Cr(u(y(s1)),-- - u(y(sm)) = > m(Y)minu(+(s))

YC{1L,...N}

Interactions between K pixels = K-additive Choquet integral
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Taking contiguity into account

The Choquet integral is usually defined by a capacity...

Let /= {1,...,N}. A capacity u over [ is a function z : 2! — [0,1] s.t.
Q u(0)=0
Q uH=1
Q@ VA BCI,AC B= u(A) < u(B)

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Taking contiguity into account

The Choquet integral is usuaIIy deflned by a capacity...

Let /= {1,...,N}. A capacity u over [ is a function z : 2! — [0,1] s.t.
Q u(0)=0
Q uH=1
Q@ VA BCI,AC B= u(A) < u(B)

o’

Maobius transform

Let u be a capacity over | = {1,..., N}. The Mébius transform of p is

m(A) =Y (-1)"\Blu(B),VYAC I

BCA
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el
nal definitions
bquet integral

Taking contiguity into account 58 fieael

... but we are working with its Mébius transform

Choquet integral
Let / ={L1,...,N} and x := (x1,...,xn) € RV

ACI icA
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Taking contiguity into account

he in

but we are working with its Mobius transform

Choquet integral
Let / ={L1,...,N} and x := (x1,...,xn) € RV

Cm(x) =Y _ m(A) )\ x

ACI icA

k-additive capacity

Let / ={1,...,N}. A capacity u over [ is k-additive (0 < k < N) if
mu(A)=0 YAC Ist. |Al > k and if

JAC Ist. |Al =k and m,(A) #0

A
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C i hoquet integral

Taking contiguity into account Chars po e titege]

We set the contiguity structure

2 pixels are contiguous <= they have a common edge
We only consider pairwise interactions

We define

m({s}) = «a
if s, t are contiguous

m({s,t}) = {g otherwise

£ > 0 = advantage to contiguity
B < 0 = disadvantage to contiguity
8 = 0 = contiguity has no influence
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Choquet integral

Taking contiguity into account e e

We impose 3 conditions on m

3 conditions (Chateauneuf and Jaffray (1989)):

Q@ m(0)=0

@ > mR)=1
RCS

@ > mR)=0, VRCSVseS
RCT,R>s

Modelling contiguity in spatial decision contexts
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hoquet integral

Taking contiguity into account ch o e |

We rewrite the Choquet integral

C(u,A) = Y m({sHu(x(s) + > m({s, t}) min(u(y(s)), u(x(1)))

seS s,teS
s,t contiguous
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hoquet integral

Taking contiguity into account ch o e |

We rewrite the Choquet integral

C(u,A) = Y m({sHu(x(s) + > m({s, t}) min(u(y(s)), u(x(1)))

seS s,teS
s,t contiguous

= a) u(y(s)+B| D min(u(y(s)). u(x(1)))

seS s,t€S
s,t contiguous
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hoquet integral

Taking contiguity into account o g

We rewrite the Choquet integral

Com(u; A) Yo om{sHu(y(s)+ Y ml{s, t}) min(u(v(s)), u(x(t)))

seS s,teS
s,t contiguous

= a) u(y(s)+B| D min(u(y(s)). u(x(1)))

seS s,tes
s,t contiguous

= « Z n,-(A)u,- + 3 Z mi(A)Ui
i=1 i=1

- Z ui(ani(A) + Bm;i(A))

i=1

where n;(A) = number of pixels s s.t. u(y(s)) = u; and m;(A) = number
of contiguous pairs {s, t} s.t. min(u(y(s)), u(y(t))) = u;
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ith the Choquet integral
Choquet integral

Taking contiguity into account

0 1 Kiometer
—

Figure : Scattered map Figure : Clustered map
Cm(U,A) = O(ZI‘I,‘(A)U,‘—FBZITI,‘(A)U,‘
i=1 i=1
= o31u1 + 40w + 41uz + 117us) + B(5u1 + 43u2 + 58us + 313us)
Cm(u,B) = «(3lus + 40up + 41uz + 117us) + B(49u1 + 75ur + 64us + 231us)

@ 3 > 0 = the clustered map is better
@ 3 < 0 = the scattered map is better
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Model
Formal

Comparing maps with the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

Question: what are the conditions underlying this model?

ison, M. Pirlot Modelling contiguity in spatial decisi



Comparing maps with the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

We represent contiguity by a graph

- Categorv C
|:| Categorv Cs
|:| Category Cy
- Category Cy

213

4|56
8
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Comparing maps with the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

We represent contiguity by a graph

- Categorv C
|:| Categorv Cs
|:| Category Cy
- Category Cy

2] 3
4|56 @
8

G = (LE)
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vith the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

Wakker characterizes a “general” Choquet integral

Characterization (Wakker 1989)

Under some topological assumptions, the following two statements are
equivalent:

(i) 7 can be represented by a Choquet integral

Cml(u(xa),-.ubw)) = > m(Y)minu(x;)

ey
YC{1,...,N}

(ii) The binary relation - does not reveal comonotonic contradictory
tradeoffs
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Comparir s with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We use the following notation

I'={1,...,N}: set of criteria
XN = X x .- x X: set of alternatives
> preference relation on XV

7~o: preference relation on X
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Comparir s with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Wakker works with comonotonic alternatives

Comonotonic alternatives

x=(x1,...,xn) and y = (y1,...,yn) are comonotonic if
Vije{l,...,N}
X; >0 x; = mnot (y; >o yi)
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ps with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Wakker works with comonotonic alternatives

Comonotonic alternatives

x=(x1,...,xn) and y = (y1,...,yn) are comonotonic if
Vije{l,...,N}
X; >0 x; = mnot (y; >o yi)

Students | Maths ~ Physics  Literature

A 18 16 10
B 10 12 18
C 14 15 15
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with the Choquet integra

Taking contiguity into account Characterization of the Choquet integral

We illustrate Wakker's axiom

Students ‘ Maths Physics Literature

A 18 12 6
B 16 11 10
A 14 12 6
B’ 13 11 10
C 18 12 10
D 16 12 12
c 14 12 10
D’ 13 12 12
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with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We illustrate Wakker's axiom

Students | Maths Physics Literature ‘ Mean

A 18 12 6 12
B 16 11 10 12.3
A’ 14 12 6 10.6
B’ 13 11 10 11.3
C 18 12 10 13.3
D 16 12 12 13.3
C 14 12 10 12
D’ 13 12 12 12.3

A<B A~B C~D C<D

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Mod
Formal definitic
Comparing vith the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Wakker's axiom is based on the revelation of comonotonic
contradictory tradeoffs

Comonotonic contradictory tradeoffs

7~ reveals comonotonic contradictory tradeoffs if Ix_;a, y_; 5, x_i7y, y—id
comonotonic such that

x_ja Zy-ifand x_iy Z y_i6

and if Iv_;o, w_; 3, v_j7y, w_;j0 comonotonic such that

v_jo 7o w—jf3 and v_jy < w_;d

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We illustrate Wakker's axiom

Students ‘ Maths Physics Literature ‘ Mean

A 18 12 6 12
B 16 11 10 12.3
A’ 14 12 6 10.6
B' 13 11 10 11.3
C 18 12 10 13.3
D 16 12 12 13.3
c 14 12 10 12
D’ 13 12 12 12.3

A<B A ~B C~D C<D
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vith the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

Wakker characterizes a “general” Choquet integral

Characterization (Wakker 1989)

Under some topological assumptions, the following two statements are
equivalent:

(i) 7 can be represented by a Choquet integral

Cml(u(xa),-.ubw)) = > m(Y)minu(x;)

ey
YC{1,...,N}

(ii) The binary relation - does not reveal comonotonic contradictory
tradeoffs
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Fo
Comp vith the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization

Let G = (/, E) be an interaction graph that does not contain any
complete subgraph with 3 nodes or more. Under the same topological
assumptions as Wakker's, the following two statements are equivalent:

(i) Z can be represented by a 2-additive Choquet integral such that

m({s,t})=0if {s,t} ¢ E
(ii) The binary relation = does not reveal G-comonotonic contradictory
tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Comparir s with the Choquet integral
Characterization of the Choquet integral

We work with G-comonotonic alternatives

Taking contiguity into account

-Comonotonic alternatives

x = (x1,...,xy) and y = (y1,...,yn) are G-comonotonic if V{i, j} € E

X; =0 Xxj = 1ot (y; =0 ¥i)

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Model
F

Comparing maps with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Here are two G-comonotonic maps

Category €4

Category Ch

Category C4y

Category C}y

n, M. Pirlot Modelling contiguity in spatial decision contexts



Comparir h the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Comonotonicity implies G-comonotonicity

Comonotonic = G-comonotonic

n, M. Pirlot Modelling contiguity in spatial decision contexts



Compz ith the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Comonotonicity implies G-comonotonicity

Comonotonic = G-comonotonic

G-comonotonic # comonotonic

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Comparir s with the Choquet integral
Characterization of the Choquet integral

Comonotonicity implies G-comonotonicity

Taking contiguity into account

Comonotonic = G-comonotonic

G-comonotonic # comonotonic

Y6 >, U1

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



e Choquet integral

Taking contiguity into account wit
ot g Choquet integral

Our characterization is based on the revelation of
G-comonotonic contradictory tradeoffs

Revelation of < -comonotonic contradictory tradeoffs

7~ reveals G-comonotonic contradictory tradeoffs if
Ix_ja, y_ i, x_i7,y—i0 G-comonotonic such that

x_ja Zy-ifand x_iy Z y_i6

and if Iv_;o, w_;53, v_jy, w_;j0 G-comonotonic such that

v_jo 7o w—jf3 and v_jy < w_;d
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Comparing maps with the Choquet integral

king contiguity into account Characterization of the Choquet integral

Our axiom implies Wakker's axiom

Comonotonic = G-comonotonic

ison, M. Pirlot Modelling contiguity in spatial decisi



Comparir s with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Our axiom implies Wakker's axiom

Comonotonic = G-comonotonic

Revelation of comonotonic contradictory tradeoffs =
revelation of G-comonotonic contradictory tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Comparir s with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

Our axiom implies Wakker's axiom

Comonotonic = G-comonotonic

Revelation of comonotonic contradictory tradeoffs =
revelation of G-comonotonic contradictory tradeoffs

Non revelation of G-comonotonic contradictory tradeoffs =
non revelation of comonotonic contradictory tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



ith the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

We obtain a particular Choquet integral

Characterization

Let G = (/, E) be an interaction graph. Under the same topological
assumptions as Wakker's, the following two statements are equivalent:

(i) 7 can be represented by

Cm(u(Xl)a"'vu(XN)) = Z m(Y) ',-glp U(Xi)
YC{1,...,N}
and
m(Y) =0 if Y is not a complete subgraph

(ii) The binary relation 7 does not reveal G-comonotonic contradictory
tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Fo
Comp vith the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization

Let G = (/, E) be an interaction graph that does not contain any
complete subgraph with 3 nodes or more. Under the same topological
assumptions as Wakker's, the following two statements are equivalent:

(i) Z can be represented by a 2-additive Choquet integral such that
m({s,t}) =0 if s, t are not linked by an edge in G

(ii) The binary relation = does not reveal G-comonotonic contradictory
tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



vith the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

We obtain a particular Choquet integral

Characterization

Let G = (/, E) be an interaction graph that does not contain any
complete subgraph with 5 nodes or more. Under the same topological
assumptions as Wakker's, the following two statements are equivalent:

(i) Z can be represented by a 4-additive Choquet integral such that
m(Y) =0 if Y contains two nodes not linked by an edge in G

(i) The binary relation - does not reveal G-comonotonic contradictory
tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Fo

Comp jith the Choquet integral

. PR vitl
Taking contiguity into account Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization
Let G = (/, E) be an interaction graph that does not contain any
complete subgraph with K + 1 nodes or more. Under the same
topological assumptions as Wakker's, the following two statements are
equivalent:

(i) Z can be represented by a K-additive Choquet integral such that

m(Y) =0 if Y contains two nodes not linked by an edge in G

(i) The binary relation = does not reveal G-comonotonic contradictory

tradeoffs

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts




Comparir s with the Choquet integral
Characterization of the Choquet integral

Going back to maps comparison

Taking contiguity into account

2 pixels are contiguous <= they have a common edge
We only consider pairwise interactions

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



with the Choquet integral
Characterization of the Choquet integral

Taking contiguity into account

Going back to maps comparison

2 pixels are contiguous <= they have a common edge
We only consider pairwise interactions

m({s}) =
m({s,t}) =

Cm(u,A) =

B if s, t are contiguous
0 otherwise

m({sHu(x()+ D m({s, te}) min(u(3(s)), u(+(2)))

s,teS
s,t contiguous

] N QN

S

= Ul +Bml( ))

i=1

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



th the Choquet integral
the Choquet integral

3-additive Choquet integral

3-additive Choquet integral

JATEN
NN

2-additive Choquet integral
iy
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; Pects 1 vith the Choquet integra
Taking contiguity into account Charoe ion of the Choquetlintegral

Going back to maps comparison

Four color theorem: with four colors, it is possible to color any connected
map in such a way that two regions sharing a common boundary (not
reduced to a single point) do not share the same color

= any connected map has no complete subgraph with five nodes

= 4-additive Choquet integral

V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



iith the Choquet integral
the Choquet integral

We can consider more pairwise interactions

1 3
a o 4-additive Choquet integral
7 8 9

6-additive Choquet integral

Modelling contiguity in spatial decision contexts



with the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We can consider more pairwise interactions

Co(uA)=a) u(x(s) + B D min(u((s)), u(x(1)))

seS {s,t}:di(s,t)=1
+ B Y min(u((s)), u(y(1)))
{s,t}:di(s,t)=2
+ .
+ B Y, min(u(y(s)), u(y(t))),
{s,t}:di(s,t)=k
with di(s, t) the L;-distance defined by di(s,t) = |s1 — t1| + |52 — o],
s=(s1,%),t = (t1,t2)
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Comy vith the Choquet integral

Taking contiguity into account Characterization of the Choquet integral

We can consider an irregular sub-division of the territory

[1 Communes of de Grenoble urban region
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m({s}) = «a
_ B if s, t are contiguous
m({s.t}) = { 0 otherwise

« can depend on the surface area of s
[ can depend on the length of the common border between s and t
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Conclusion

@ Our characterization depends on the interaction structure
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Conclusion

@ Our characterization depends on the interaction structure

@ Our interactions are well-defined in terms of contiguity

Favored configuration with 5 > 0 ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ 2 ‘ 2 ‘

Favored configuration with 8 < 0 ‘ 2 ‘ 0 ‘ 2 ‘ 0 ‘ 1 ‘ 1 ‘
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Thank you for your attention
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