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We want to know which map is better

Response to the risk of degradation of the landscape
(Loulouka Basin, Burkina Faso)

Previous state New state
Evolution for the better or the worse?
Need of a model for comparing decision maps
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Comparing maps is a multi-criteria problem

S: territory composed of pixels
s ∈ S: pixel
γ(s): evaluation of s on a common scale for all pixels
C = {C1, . . . ,Cn}: the common evaluation scale, composed of n
categories
A = (S, γ): evaluated geographic map (= decision map)
A: set of evaluated maps
%: preference relation on A

Comparison with a MCDA problem
maps = alternatives
evaluations associated with the pixels = criteria

Remark: common evaluation scale for all pixels ⇒ commensurable scales
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Model 1:

Comparing maps in a basic way
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We use an expected utility model

Expected utility model
A = (S, γ),B = (S, δ)

A % B ⇐⇒ 1
N
∑
s∈S

u(γ(s)) ≥ 1
N
∑
s∈S

u(δ(s)),

with γ(s) ∈ {C1, . . . ,Cn} and N is the total number of pixels

Rewriting the expected utility model
u(γ(s)) = ui if γ(s) = Ci

xi(A) = |{s∈S:γ(s)=Ci}|
N

A % B ⇐⇒
n∑

i=1
xi(A)ui ≥

n∑
i=1

xi(B)ui
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The model assumes that the region is homogeneous

Hypothesis
We assume that the whole region is homogeneous:

x(A) = x(B)⇒ A ∼ B

with x(A) = (x1(A), x2(A), . . . , xn(A)) the area distribution in categories
of map A
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Are these two maps really indifferent?

Model 1 assumes that the region is homogeneous

Figure : State 1 Figure : State 2

Model 2 assumes that the region is composed of several
homogeneous sub-regions (defined by a geographic aspect)

9/49 V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Comparing maps in a basic way
Taking geographic aspects into account

Taking contiguity into account

Are these two maps really indifferent?

Model 1 assumes that the region is homogeneous

Figure : State 1 Figure : State 2

Model 2 assumes that the region is composed of several
homogeneous sub-regions (defined by a geographic aspect)

9/49 V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Comparing maps in a basic way
Taking geographic aspects into account

Taking contiguity into account

Model 2:

Taking geographic aspects into account
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We generalize the expected utility model

A % B ⇐⇒
m∑

j=1

n∑
i=1

xij(A)uj(Eij) ≥
m∑

j=1

n∑
i=1

xij(B)uj(Eij)

where
j is the homogeneous sub-region
i is the category
xij(·) is the proportion of the surface of region j assigned to category
i
uj(Eij) is the utility associated with the homogeneous sub-region j
entirely assigned to category i

Hypothesis
We assume that comparing maps only depends on the comparison of the
area distributions of the homogeneous sub-regions: for all A,B,C ,D, if
A % B, xj(Aj) = xj(Cj) and xj(Bj) = xj(Dj) for all j , then C % D
with xj(·) = (x1j(·), . . . , xnj(·))
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Are these maps really indifferent?

Same distribution

Figure : Scattered map Figure : Clustered map

⇒ Model based on the Choquet integral
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The Choquet integral
No interaction: ∑

s∈S
m({s})u(γ(s))

Pairwise interactions + triple interactions + · · ·∑
s∈S

m({s})u(γ(s)) +
∑

s,t∈S
m({s, t})min(u(γ(s)), u(γ(t)))

+
∑

r ,s,t∈S
m({r , s, t})min(u(γ(r)), u(γ(s)), u(γ(t)))

+ · · ·

Choquet integral:

Cm(u(γ(s1)), . . . , u(γ(sN))) =
∑

Y⊆{1,...,N}

m(Y )min
i∈Y

u(γ(si))

Interactions between K pixels ⇒ K -additive Choquet integral
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The Choquet integral is usually defined by a capacity...

Capacity
Let I = {1, . . . ,N}. A capacity µ over I is a function µ : 2I → [0, 1] s.t.

1 µ(∅) = 0
2 µ(I) = 1
3 ∀A,B ⊆ I,A ⊆ B ⇒ µ(A) ≤ µ(B)

Möbius transform
Let µ be a capacity over I = {1, . . . ,N}. The Möbius transform of µ is

m(A) =
∑
B⊆A

(−1)|A\B|µ(B),∀A ⊆ I
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... but we are working with its Möbius transform

Choquet integral
Let I = {1, . . . ,N} and x := (x1, . . . , xN) ∈ RN

Cm(x) =
∑
A⊆I

m(A)
∧
i∈A

xi

k-additive capacity
Let I = {1, . . . ,N}. A capacity µ over I is k-additive (0 < k ≤ N) if
mµ(A) = 0 ∀A ⊆ I s.t. |A| > k and if
∃A ⊆ I s.t. |A| = k and mµ(A) 6= 0
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We set the contiguity structure

2 pixels are contiguous ⇐⇒ they have a common edge

We only consider pairwise interactions

We define

m({s}) = α

m({s, t}) =

{
β if s, t are contiguous
0 otherwise

β > 0⇒ advantage to contiguity
β < 0⇒ disadvantage to contiguity
β = 0⇒ contiguity has no influence
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We impose 3 conditions on m

3 conditions (Chateauneuf and Jaffray (1989)):

1 m(∅) = 0
2
∑
R⊆S

m(R) = 1

3
∑

R⊆T ,R3s
m(R) ≥ 0, ∀R ⊆ S,∀s ∈ S
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We rewrite the Choquet integral

Cm(u,A) =
∑
s∈S

m({s})u(γ(s)) +
∑
s,t∈S

s,t contiguous

m({s, t})min(u(γ(s)), u(γ(t)))

= α
∑
s∈S

u(γ(s)) + β

 ∑
s,t∈S

s,t contiguous

min(u(γ(s)), u(γ(t)))


= α

n∑
i=1

ni(A)ui + β

n∑
i=1

mi(A)ui

=
n∑

i=1
ui(αni(A) + βmi(A))

where ni(A) = number of pixels s s.t. u(γ(s)) = ui and mi(A) = number
of contiguous pairs {s, t} s.t. min(u(γ(s)), u(γ(t))) = ui
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Figure : Scattered map Figure : Clustered map

Cm(u,A) = α

n∑
i=1

ni(A)ui + β

n∑
i=1

mi(A)ui

= α(31u1 + 40u2 + 41u3 + 117u4) + β(5u1 + 43u2 + 58u3 + 313u4)

Cm(u,B) = α(31u1 + 40u2 + 41u3 + 117u4) + β(49u1 + 75u2 + 64u3 + 231u4)

β > 0⇒ the clustered map is better
β < 0⇒ the scattered map is better
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Question: what are the conditions underlying this model?
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We represent contiguity by a graph
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Wakker characterizes a “general” Choquet integral

Characterization (Wakker 1989)
Under some topological assumptions, the following two statements are
equivalent:

(i) % can be represented by a Choquet integral

Cm(u(x1), . . . , u(xN)) =
∑

Y⊆{1,...,N}

m(Y )min
i∈Y

u(xi)

(ii) The binary relation % does not reveal comonotonic contradictory
tradeoffs
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We use the following notation

I = {1, . . . ,N}: set of criteria

X N = X × · · · × X : set of alternatives

%: preference relation on X N

%0: preference relation on X
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Wakker works with comonotonic alternatives

Comonotonic alternatives
x = (x1, . . . , xN) and y = (y1, . . . , yN) are comonotonic if
∀i , j ∈ {1, . . . ,N}

xi �0 xj ⇒ not (yj �0 yi)

Students Maths Physics Literature
A 18 16 10
B 10 12 18
C 14 15 15
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We illustrate Wakker’s axiom

Students Maths Physics Literature
A 18 12 6
B 16 11 10
A’ 14 12 6
B’ 13 11 10
C 18 12 10
D 16 12 12
C’ 14 12 10
D’ 13 12 12
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We illustrate Wakker’s axiom

Students Maths Physics Literature Mean
A 18 12 6 12
B 16 11 10 12.3
A’ 14 12 6 10.6
B’ 13 11 10 11.3
C 18 12 10 13.3
D 16 12 12 13.3
C’ 14 12 10 12
D’ 13 12 12 12.3

A ≺ B A’ ∼ B’ C ∼ D C’ ≺ D’
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Wakker’s axiom is based on the revelation of comonotonic
contradictory tradeoffs

Comonotonic contradictory tradeoffs
% reveals comonotonic contradictory tradeoffs if ∃x−iα, y−iβ, x−iγ, y−iδ
comonotonic such that

x−iα - y−iβ and x−iγ % y−iδ

and if ∃v−jα,w−jβ, v−jγ,w−jδ comonotonic such that

v−jα % w−jβ and v−jγ ≺ w−jδ
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Wakker characterizes a “general” Choquet integral

Characterization (Wakker 1989)
Under some topological assumptions, the following two statements are
equivalent:

(i) % can be represented by a Choquet integral

Cm(u(x1), . . . , u(xN)) =
∑

Y⊆{1,...,N}

m(Y )min
i∈Y

u(xi)

(ii) The binary relation % does not reveal comonotonic contradictory
tradeoffs
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We obtain a particular Choquet integral

Characterization
Let G = (I,E ) be an interaction graph that does not contain any
complete subgraph with 3 nodes or more. Under the same topological
assumptions as Wakker’s, the following two statements are equivalent:

(i) % can be represented by a 2-additive Choquet integral such that
m({s, t}) = 0 if {s, t} /∈ E

(ii) The binary relation % does not reveal G-comonotonic contradictory
tradeoffs
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We work with G-comonotonic alternatives

G-Comonotonic alternatives
x = (x1, . . . , xN) and y = (y1, . . . , yN) are G-comonotonic if ∀{i , j} ∈ E

xi �0 xj ⇒ not (yj �0 yi)
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Here are two G-comonotonic maps
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Comonotonicity implies G-comonotonicity

Comonotonic ⇒ G-comonotonic

G-comonotonic ; comonotonic
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Our characterization is based on the revelation of
G-comonotonic contradictory tradeoffs

Revelation of G-comonotonic contradictory tradeoffs
% reveals G-comonotonic contradictory tradeoffs if
∃x−iα, y−iβ, x−iγ, y−iδ G-comonotonic such that

x−iα - y−iβ and x−iγ % y−iδ

and if ∃v−jα,w−jβ, v−jγ,w−jδ G-comonotonic such that

v−jα % w−jβ and v−jγ ≺ w−jδ
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Our axiom implies Wakker’s axiom

Comonotonic ⇒ G-comonotonic

Revelation of comonotonic contradictory tradeoffs ⇒
revelation of G-comonotonic contradictory tradeoffs

Non revelation of G-comonotonic contradictory tradeoffs ⇒
non revelation of comonotonic contradictory tradeoffs
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We obtain a particular Choquet integral

Characterization
Let G = (I,E ) be an interaction graph. Under the same topological
assumptions as Wakker’s, the following two statements are equivalent:

(i) % can be represented by

Cm(u(x1), . . . , u(xN)) =
∑

Y⊆{1,...,N}

m(Y )min
i∈Y

u(xi)

and
m(Y ) = 0 if Y is not a complete subgraph

(ii) The binary relation % does not reveal G-comonotonic contradictory
tradeoffs
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We obtain a particular Choquet integral

Characterization
Let G = (I,E ) be an interaction graph that does not contain any
complete subgraph with 3 nodes or more. Under the same topological
assumptions as Wakker’s, the following two statements are equivalent:

(i) % can be represented by a 2-additive Choquet integral such that
m({s, t}) = 0 if s, t are not linked by an edge in G

(ii) The binary relation % does not reveal G-comonotonic contradictory
tradeoffs
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We obtain a particular Choquet integral

Characterization
Let G = (I,E ) be an interaction graph that does not contain any
complete subgraph with 5 nodes or more. Under the same topological
assumptions as Wakker’s, the following two statements are equivalent:

(i) % can be represented by a 4-additive Choquet integral such that
m(Y ) = 0 if Y contains two nodes not linked by an edge in G

(ii) The binary relation % does not reveal G-comonotonic contradictory
tradeoffs
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We obtain a particular Choquet integral

Characterization
Let G = (I,E ) be an interaction graph that does not contain any
complete subgraph with K + 1 nodes or more. Under the same
topological assumptions as Wakker’s, the following two statements are
equivalent:

(i) % can be represented by a K -additive Choquet integral such that
m(Y ) = 0 if Y contains two nodes not linked by an edge in G

(ii) The binary relation % does not reveal G-comonotonic contradictory
tradeoffs
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Going back to maps comparison
2 pixels are contiguous ⇐⇒ they have a common edge
We only consider pairwise interactions

m({s}) = α

m({s, t}) =

{
β if s, t are contiguous
0 otherwise

Cm(u,A) =
∑
s∈S

m({s})u(γ(s)) +
∑
s,t∈S

s,t contiguous

m({s, t})min(u(γ(s)), u(γ(t)))

=
n∑

i=1
ui(αni(A) + βmi(A))
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Going back to maps comparison

3-additive Choquet integral

3-additive Choquet integral

2-additive Choquet integral

42/49 V. Brison, M. Pirlot Modelling contiguity in spatial decision contexts



Comparing maps in a basic way
Taking geographic aspects into account

Taking contiguity into account

Model
Formal definitions
Comparing maps with the Choquet integral
Characterization of the Choquet integral

Going back to maps comparison

Four color theorem: with four colors, it is possible to color any connected
map in such a way that two regions sharing a common boundary (not
reduced to a single point) do not share the same color
⇒ any connected map has no complete subgraph with five nodes
⇒ 4-additive Choquet integral
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We can consider more pairwise interactions

4-additive Choquet integral

6-additive Choquet integral
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We can consider more pairwise interactions

Cm(u,A) = α
∑
s∈S

u(γ(s)) + β1
∑

{s,t}:d1(s,t)=1

min(u(γ(s)), u(γ(t)))

+ β2
∑

{s,t}:d1(s,t)=2

min(u(γ(s)), u(γ(t)))

+ · · ·
+ βk

∑
{s,t}:d1(s,t)=k

min(u(γ(s)), u(γ(t))),

with d1(s, t) the L1-distance defined by d1(s, t) = |s1 − t1|+ |s2 − t2|,
s = (s1, s2), t = (t1, t2)
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We can consider an irregular sub-division of the territory

m({s}) = α

m({s, t}) =

{
β if s, t are contiguous
0 otherwise

α can depend on the surface area of s
β can depend on the length of the common border between s and t
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Conclusion

Our characterization depends on the interaction structure

Our interactions are well-defined in terms of contiguity

Favored configuration with β > 0

Favored configuration with β < 0
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Thank you for your attention
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