

Modelling contiguity in spatial decision contexts

V. Brison, M. Pirlot

UMONS - Faculty of Engineering

June 9th, 2017

We want to know which map is better

Response to the risk of degradation of the landscape (Loulouka Basin, Burkina Faso)

Previous state

New state

Evolution for the better or the worse? Need of a model for comparing decision maps

Comparing maps is a multi-criteria problem

- S: territory composed of pixels
- $s \in S$: pixel

 $\gamma(s)$: evaluation of s on a common scale for all pixels

 $\mathcal{C} = \{C_1, \dots, C_n\}$: the common evaluation scale, composed of n categories

 $A = (S, \gamma)$: evaluated geographic map (= decision map)

- $\mathcal{A}:$ set of evaluated maps
- $\succsim:$ preference relation on $\mathcal A$

Comparing maps is a multi-criteria problem

- S: territory composed of pixels
- $s \in S$: pixel

 $\gamma(s)$: evaluation of s on a common scale for all pixels

 $\mathcal{C} = \{C_1, \dots, C_n\}$: the common evaluation scale, composed of n categories

 $A = (S, \gamma)$: evaluated geographic map (= decision map)

 $\mathcal{A}:$ set of evaluated maps

 $\succsim:$ preference relation on $\mathcal A$

Comparison with a MCDA problem

maps = alternatives

```
evaluations associated with the pixels = criteria
```

Remark: common evaluation scale for all pixels \Rightarrow commensurable scales

- Comparing maps in a basic way
- 2 Taking geographic aspects into account
- 3 Taking contiguity into account

Model 1:

Comparing maps in a basic way

We use an expected utility model

Expected utility model

 $A = (S, \gamma), B = (S, \delta)$

$$A \succeq B \iff rac{1}{N} \sum_{s \in S} u(\gamma(s)) \geq rac{1}{N} \sum_{s \in S} u(\delta(s)),$$

with $\gamma(s) \in \{C_1, \ldots, C_n\}$ and N is the total number of pixels

We use an expected utility model

Expected utility model

 $A = (S, \gamma), B = (S, \delta)$

$$A \succsim B \iff rac{1}{N} \sum_{s \in S} u(\gamma(s)) \geq rac{1}{N} \sum_{s \in S} u(\delta(s)),$$

with $\gamma(s) \in \{C_1, \ldots, C_n\}$ and N is the total number of pixels

Rewriting the expected utility model

$$u(\gamma(s)) = u_i \text{ if } \gamma(s) = C_i$$

$$x_i(A) = \frac{|\{s \in S: \gamma(s) = C_i\}|}{N}$$

$$A \succeq B \iff \sum_{i=1}^n x_i(A)u_i \ge \sum_{i=1}^n x_i(B)u_i$$

The model assumes that the region is homogeneous

Hypothesis

We assume that the whole region is *homogeneous*:

$$x(A) = x(B) \Rightarrow A \sim B$$

with $x(A) = (x_1(A), x_2(A), \dots, x_n(A))$ the area distribution in categories of map A

Are these two maps really indifferent?

• Model 1 assumes that the region is homogeneous

Figure : State 1

Figure : State 2

Are these two maps really indifferent?

• Model 1 assumes that the region is homogeneous

Figure : State 2

 Model 2 assumes that the region is composed of several homogeneous sub-regions (defined by a geographic aspect)

Model 2:

Taking geographic aspects into account

We generalize the expected utility model

$$A \succeq B \iff \sum_{j=1}^{m} \sum_{i=1}^{n} x_{ij}(A) u_j(E_{ij}) \ge \sum_{j=1}^{m} \sum_{i=1}^{n} x_{ij}(B) u_j(E_{ij})$$

where

j is the homogeneous sub-region

i is the category

 $x_{ij}(\cdot)$ is the proportion of the surface of region j assigned to category i

 $u_j(E_{ij})$ is the utility associated with the homogeneous sub-region j entirely assigned to category i

We generalize the expected utility model

$$A \succeq B \iff \sum_{j=1}^{m} \sum_{i=1}^{n} x_{ij}(A) u_j(E_{ij}) \ge \sum_{j=1}^{m} \sum_{i=1}^{n} x_{ij}(B) u_j(E_{ij})$$

where

j is the homogeneous sub-region

i is the category

 $x_{ij}(\cdot)$ is the proportion of the surface of region j assigned to category i

 $u_j(E_{ij})$ is the utility associated with the homogeneous sub-region j entirely assigned to category i

Hypothesis

We assume that comparing maps only depends on the comparison of the area distributions of the homogeneous sub-regions: for all A, B, C, D, if $A \succeq B, x_j(A_j) = x_j(C_j)$ and $x_j(B_j) = x_j(D_j)$ for all j, then $C \succeq D$ with $x_j(\cdot) = (x_{1j}(\cdot), \ldots, x_{nj}(\cdot))$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Taking contiguity into account

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Are these maps really indifferent?

Same distribution

Figure : Scattered map

Figure : Clustered map

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Are these maps really indifferent?

Same distribution

Figure : Scattered map

Figure : Clustered map

 \Rightarrow Model based on the Choquet integral

Model

Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

The Choquet integral

No interaction:

 $\sum m(\{s\})u(\gamma(s))$ s∈S

Model

Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

The Choquet integral

No interaction:

$$\sum_{s\in S} m(\{s\})u(\gamma(s))$$

Pairwise interactions

$$\sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{s,t \in S} m(\{s,t\})\min(u(\gamma(s)),u(\gamma(t)))$$

Model Formal definitions Comparing maps with the Choquet integra Characterization of the Choquet integral

The Choquet integral

No interaction:

$$\sum_{s\in S} m(\{s\})u(\gamma(s))$$

Pairwise interactions + triple interactions

$$\sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{s,t \in S} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t))) \\ + \sum_{r,s,t \in S} m(\{r,s,t\})\min(u(\gamma(r)), u(\gamma(s)), u(\gamma(t)))$$

Model Formal definitions Comparing maps with the Choquet integra Characterization of the Choquet integral

The Choquet integral

No interaction:

$$\sum_{s\in S} m(\{s\})u(\gamma(s))$$

Pairwise interactions + triple interactions + \cdots

$$\sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{s,t \in S} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t))) \\ + \sum_{r,s,t \in S} m(\{r,s,t\})\min(u(\gamma(r)), u(\gamma(s)), u(\gamma(t))) \\ + \cdots$$

Model Formal definitions Comparing maps with the Choquet integra Characterization of the Choquet integral

The Choquet integral

No interaction:

$$\sum_{s\in S} m(\{s\})u(\gamma(s))$$

Pairwise interactions + triple interactions + ···

$$\sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{s,t \in S} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t))) \\ + \sum_{r,s,t \in S} m(\{r,s,t\})\min(u(\gamma(r)), u(\gamma(s)), u(\gamma(t))) \\ + \cdots$$

Choquet integral:

$$C_m(u(\gamma(s_1)),\ldots,u(\gamma(s_N))) = \sum_{Y \subseteq \{1,\ldots,N\}} m(Y) \min_{i \in Y} u(\gamma(s_i))$$

Taking contiguity into account

Model

The Choquet integral

No interaction:

$$\sum_{s\in S} m(\{s\})u(\gamma(s))$$

Pairwise interactions + triple interactions + ···

4

$$\sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{s,t \in S} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t))) \\ + \sum_{r,s,t \in S} m(\{r,s,t\})\min(u(\gamma(r)), u(\gamma(s)), u(\gamma(t))) \\ + \cdots$$

Choquet integral:

$$C_m(u(\gamma(s_1)),\ldots,u(\gamma(s_N))) = \sum_{Y \subseteq \{1,\ldots,N\}} m(Y) \min_{i \in Y} u(\gamma(s_i))$$

Interactions between K pixels \Rightarrow K-additive Choquet integral

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

The Choquet integral is usually defined by a capacity...

Capacity

Let $I = \{1, \dots, N\}$. A capacity μ over I is a function $\mu : 2^I \to [0, 1]$ s.t. • $\mu(\emptyset) = 0$ • $\mu(I) = 1$ • $\forall A, B \subseteq I, A \subseteq B \Rightarrow \mu(A) \le \mu(B)$

The Choquet integral is usually defined by a capacity...

Capacity

Let
$$I = \{1, \dots, N\}$$
. A capacity μ over I is a function $\mu : 2^I \to [0, 1]$ s.t.
• $\mu(\emptyset) = 0$
• $\mu(I) = 1$
• $\forall A, B \subseteq I, A \subseteq B \Rightarrow \mu(A) \le \mu(B)$

Möbius transform

Let μ be a capacity over $I = \{1, \dots, N\}$. The Möbius transform of μ is

$$m(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} \mu(B), \forall A \subseteq I$$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

... but we are working with its Möbius transform

Choquet integral

Let
$$I = \{1, \ldots, N\}$$
 and $x := (x_1, \ldots, x_N) \in \mathbb{R}^N$

$$C_m(x) = \sum_{A \subseteq I} m(A) \bigwedge_{i \in A} x_i$$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

... but we are working with its Möbius transform

Choquet integral

Let
$$I = \{1, \ldots, N\}$$
 and $x := (x_1, \ldots, x_N) \in \mathbb{R}^N$

$$C_m(x) = \sum_{A \subseteq I} m(A) \bigwedge_{i \in A} x_i$$

k-additive capacity

Let $I = \{1, \ldots, N\}$. A capacity μ over I is k-additive $(0 < k \le N)$ if $m_{\mu}(A) = 0 \quad \forall A \subseteq I \text{ s.t. } |A| > k \text{ and if} \\ \exists A \subseteq I \text{ s.t. } |A| = k \text{ and } m_{\mu}(A) \neq 0$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We set the contiguity structure

2 pixels are contiguous \iff they have a common edge

We only consider pairwise interactions

We define

$$m(\{s\}) = \alpha$$

$$m(\{s,t\}) = \begin{cases} \beta & \text{if } s, t \text{ are contiguous} \\ 0 & \text{otherwise} \end{cases}$$

 $\begin{array}{l} \beta > \mathbf{0} \Rightarrow \text{ advantage to contiguity} \\ \beta < \mathbf{0} \Rightarrow \text{ disadvantage to contiguity} \\ \beta = \mathbf{0} \Rightarrow \text{ contiguity has no influence} \end{array}$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We impose 3 conditions on m

3 conditions (Chateauneuf and Jaffray (1989)):

•
$$m(\emptyset) = 0$$

• $\sum_{R \subseteq S} m(R) = 1$
• $\sum_{R \subseteq T, R \ni s} m(R) \ge 0, \quad \forall R \subseteq S, \forall s \in S$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We rewrite the Choquet integral

$$C_m(u,A) = \sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{\substack{s,t \in S\\s,t \text{ contiguous}}} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t)))$$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We rewrite the Choquet integral

$$C_m(u, A) = \sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{\substack{s,t \in S\\s,t \text{ contiguous}}} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t)))$$
$$= \alpha \sum_{s \in S} u(\gamma(s)) + \beta \left(\sum_{\substack{s,t \in S\\s,t \text{ contiguous}}} \min(u(\gamma(s)), u(\gamma(t)))\right)$$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We rewrite the Choquet integral

$$C_{m}(u,A) = \sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{\substack{s,t \in S \\ s,t \text{ contiguous}}} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t)))$$

$$= \alpha \sum_{s \in S} u(\gamma(s)) + \beta \left(\sum_{\substack{s,t \in S \\ s,t \text{ contiguous}}} \min(u(\gamma(s)), u(\gamma(t)))\right)$$

$$= \alpha \sum_{i=1}^{n} n_{i}(A)u_{i} + \beta \sum_{i=1}^{n} m_{i}(A)u_{i}$$

$$= \sum_{i=1}^{n} u_{i}(\alpha n_{i}(A) + \beta m_{i}(A))$$

where $n_i(A)$ = number of pixels *s* s.t. $u(\gamma(s)) = u_i$ and $m_i(A)$ = number of contiguous pairs $\{s, t\}$ s.t. $\min(u(\gamma(s)), u(\gamma(t))) = u_i$

Taking contiguity into account

Comparing maps with the Choquet integral Characterization of the Choquet integral

Figure : Scattered map

Figure : Clustered map

$$C_m(u, A) = \alpha \sum_{i=1}^n n_i(A)u_i + \beta \sum_{i=1}^n m_i(A)u_i$$

= $\alpha(31u_1 + 40u_2 + 41u_3 + 117u_4) + \beta(5u_1 + 43u_2 + 58u_3 + 313u_4)$
$$C_m(u, B) = \alpha(31u_1 + 40u_2 + 41u_3 + 117u_4) + \beta(49u_1 + 75u_2 + 64u_3 + 231u_4)$$

- $\beta > 0 \Rightarrow$ the clustered map is better
- $\beta < 0 \Rightarrow$ the scattered map is better
Question: what are the conditions underlying this model?

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We represent contiguity by a graph

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We represent contiguity by a graph

G = (I, E)

Wakker characterizes a "general" Choquet integral

Characterization (Wakker 1989)

Under some topological assumptions, the following two statements are equivalent:

(i) \succsim can be represented by a Choquet integral

$$C_m(u(x_1),\ldots,u(x_N))=\sum_{Y\subseteq\{1,\ldots,N\}}m(Y)\min_{i\in Y}u(x_i)$$

(ii) The binary relation \succsim does not reveal comonotonic contradictory tradeoffs

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We use the following notation

$$I = \{1, \dots, N\}$$
: set of criteria

 $X^N = X \times \cdots \times X$: set of alternatives

- \succ : preference relation on X^N
- \succeq_0 : preference relation on X

Wakker works with comonotonic alternatives

Comonotonic alternatives

$$x = (x_1, \dots, x_N)$$
 and $y = (y_1, \dots, y_N)$ are comonotonic if
 $\forall i, j \in \{1, \dots, N\}$
 $x_i \succ_0 x_i \Rightarrow \text{ not } (y_i \succ_0 y_i)$

Wakker works with comonotonic alternatives

Comonotonic alternatives

$$\begin{aligned} x &= (x_1, \dots, x_N) \text{ and } y = (y_1, \dots, y_N) \text{ are comonotonic if } \\ \forall i, j \in \{1, \dots, N\} \\ x_i \succ_0 x_i \Rightarrow \text{ not } (y_i \succ_0 y_i) \end{aligned}$$

Students	Maths	Physics	Literature
А	18	16	10
В	10	12	18
С	14	15	15

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We illustrate Wakker's axiom

Students	Maths	Physics	Literature
А	18	12	6
В	16	11	10
A'	14	12	6
B'	13	11	10
С	18	12	10
D	16	12	12
C'	14	12	10
D'	13	12	12

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We illustrate Wakker's axiom

Students	Maths	Physics	Literature	Mean
А	18	12	6	12
В	16	11	10	12.3
A'	14	12	6	10.6
B'	13	11	10	11.3
С	18	12	10	13.3
D	16	12	12	13.3
C'	14	12	10	12
D'	13	12	12	12.3

 $A \prec B \quad A' \sim B' \quad C \sim D \quad C' \prec D'$

Wakker's axiom is based on the revelation of comonotonic contradictory tradeoffs

Comonotonic contradictory tradeoffs

 \succeq reveals comonotonic contradictory tradeoffs if $\exists x_{-i}\alpha, y_{-i}\beta, x_{-i}\gamma, y_{-i}\delta$ comonotonic such that

$$x_{-i} \alpha \precsim y_{-i} \beta$$
 and $x_{-i} \gamma \succsim y_{-i} \delta$

and if $\exists v_{-j}\alpha, w_{-j}\beta, v_{-j}\gamma, w_{-j}\delta$ comonotonic such that

$$\mathbf{v}_{-j} \alpha \succsim \mathbf{w}_{-j} \beta$$
 and $\mathbf{v}_{-j} \gamma \prec \mathbf{w}_{-j} \delta$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We illustrate Wakker's axiom

Students	Maths	Physics	Literature	Mean
А	18	12	6	12
В	16	11	10	12.3
A'	14	12	6	10.6
B'	13	11	10	11.3
С	18	12	10	13.3
D	16	12	12	13.3
C'	14	12	10	12
D'	13	12	12	12.3
$A \prec B A' \sim B' C \sim D C' \prec D'$				

Wakker characterizes a "general" Choquet integral

Characterization (Wakker 1989)

Under some topological assumptions, the following two statements are equivalent:

(i) \succsim can be represented by a Choquet integral

$$C_m(u(x_1),\ldots,u(x_N))=\sum_{Y\subseteq\{1,\ldots,N\}}m(Y)\min_{i\in Y}u(x_i)$$

(ii) The binary relation \succsim does not reveal comonotonic contradictory tradeoffs

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization

Let G = (I, E) be an interaction graph that does not contain any complete subgraph with 3 nodes or more. Under the same topological assumptions as Wakker's, the following two statements are equivalent: (i) \succeq can be represented by a 2-additive Choquet integral such that $m(\{s, t\}) = 0$ if $\{s, t\} \notin E$

(ii) The binary relation \succsim does not reveal G-comonotonic contradictory tradeoffs

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We work with G-comonotonic alternatives

G-Comonotonic alternatives

 $x = (x_1, \dots, x_N)$ and $y = (y_1, \dots, y_N)$ are *G*-comonotonic if $\forall \{i, j\} \in E$ $x_i \succ_0 x_i \Rightarrow \text{ not } (y_i \succ_0 y_i)$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Here are two *G*-comonotonic maps

Comonotonicity implies *G*-comonotonicity

 $\mathsf{Comonotonic} \Rightarrow \textit{G-comonotonic}$

Comonotonicity implies G-comonotonicity

 $\mathsf{Comonotonic} \Rightarrow \textit{G-comonotonic}$

G-comonotonic \Rightarrow comonotonic

Comonotonicity implies G-comonotonicity

 $\mathsf{Comonotonic} \Rightarrow \textit{G-comonotonic}$

G-comonotonic \Rightarrow comonotonic

Our characterization is based on the revelation of *G*-comonotonic contradictory tradeoffs

Revelation of G-comonotonic contradictory tradeoffs

 \gtrsim reveals *G*-comonotonic contradictory tradeoffs if $\exists x_{-i}\alpha, y_{-i}\beta, x_{-i}\gamma, y_{-i}\delta$ *G*-comonotonic such that

 $x_{-i} \alpha \precsim y_{-i} \beta$ and $x_{-i} \gamma \succsim y_{-i} \delta$

and if $\exists v_{-j}\alpha, w_{-j}\beta, v_{-j}\gamma, w_{-j}\delta$ *G*-comonotonic such that

 $v_{-j} \alpha \succeq w_{-j} \beta$ and $v_{-j} \gamma \prec w_{-j} \delta$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Our axiom implies Wakker's axiom

Comonotonic \Rightarrow *G*-comonotonic

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Our axiom implies Wakker's axiom

$\mathsf{Comonotonic} \Rightarrow \textit{G-comonotonic}$

Revelation of comonotonic contradictory tradeoffs \Rightarrow revelation of *G*-comonotonic contradictory tradeoffs

Our axiom implies Wakker's axiom

$\mathsf{Comonotonic} \Rightarrow \textit{G-comonotonic}$

Revelation of comonotonic contradictory tradeoffs \Rightarrow revelation of *G*-comonotonic contradictory tradeoffs

Non revelation of G-comonotonic contradictory tradeoffs \Rightarrow non revelation of comonotonic contradictory tradeoffs

We obtain a particular Choquet integral

Characterization

Let G = (I, E) be an interaction graph. Under the same topological assumptions as Wakker's, the following two statements are equivalent:

(i) \succeq can be represented by

$$C_m(u(x_1),\ldots,u(x_N))=\sum_{Y\subseteq\{1,\ldots,N\}}m(Y)\min_{i\in Y}u(x_i)$$

and

m(Y) = 0 if Y is not a complete subgraph

(ii) The binary relation \succeq does not reveal *G*-comonotonic contradictory tradeoffs

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization

Let G = (I, E) be an interaction graph that does not contain any complete subgraph with 3 nodes or more. Under the same topological assumptions as Wakker's, the following two statements are equivalent: (i) \gtrsim can be represented by a 2-additive Choquet integral such that $m(\{s, t\}) = 0$ if s, t are not linked by an edge in G

(ii) The binary relation \succeq does not reveal *G*-comonotonic contradictory tradeoffs

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization

Let G = (I, E) be an interaction graph that does not contain any complete subgraph with 5 nodes or more. Under the same topological assumptions as Wakker's, the following two statements are equivalent: (i) \succeq can be represented by a 4-additive Choquet integral such that

m(Y) = 0 if Y contains two nodes not linked by an edge in G

(ii) The binary relation \succsim does not reveal G-comonotonic contradictory tradeoffs

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We obtain a particular Choquet integral

Characterization

Let G = (I, E) be an interaction graph that does not contain any complete subgraph with K + 1 nodes or more. Under the same topological assumptions as Wakker's, the following two statements are equivalent:

(i) \succeq can be represented by a K-additive Choquet integral such that

m(Y) = 0 if Y contains two nodes not linked by an edge in G

(ii) The binary relation \succsim does not reveal G-comonotonic contradictory tradeoffs

Going back to maps comparison

2 pixels are contiguous \iff they have a common edge We only consider pairwise interactions

Going back to maps comparison

2 pixels are contiguous \iff they have a common edge We only consider pairwise interactions

$$m(\{s\}) = \alpha$$

$$m(\{s,t\}) = \begin{cases} \beta & \text{if } s, t \text{ are contiguous} \\ 0 & \text{otherwise} \end{cases}$$

$$C_m(u,A) = \sum_{s \in S} m(\{s\})u(\gamma(s)) + \sum_{\substack{s,t \in S \\ s,t \text{ contiguous}}} m(\{s,t\})\min(u(\gamma(s)), u(\gamma(t)))$$

$$= \sum_{i=1}^n u_i(\alpha n_i(A) + \beta m_i(A))$$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Going back to maps comparison

3-additive Choquet integral

3-additive Choquet integral

2-additive Choquet integral

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

Going back to maps comparison

Four color theorem: with four colors, it is possible to color any connected map in such a way that two regions sharing a common boundary (not reduced to a single point) do not share the same color \Rightarrow any connected map has no complete subgraph with five nodes \Rightarrow 4-additive Choquet integral

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We can consider more pairwise interactions

4-additive Choquet integral

6-additive Choquet integral

We can consider more pairwise interactions

$$C_m(u, A) = \alpha \sum_{s \in S} u(\gamma(s)) + \beta_1 \sum_{\{s,t\}:d_1(s,t)=1} \min(u(\gamma(s)), u(\gamma(t))) + \beta_2 \sum_{\{s,t\}:d_1(s,t)=2} \min(u(\gamma(s)), u(\gamma(t))) + \cdots + \beta_k \sum_{\{s,t\}:d_1(s,t)=k} \min(u(\gamma(s)), u(\gamma(t))),$$

with $d_1(s, t)$ the L_1 -distance defined by $d_1(s, t) = |s_1 - t_1| + |s_2 - t_2|$, $s = (s_1, s_2), t = (t_1, t_2)$

Model Formal definitions Comparing maps with the Choquet integral Characterization of the Choquet integral

We can consider an irregular sub-division of the territory

$$\begin{array}{lll} m(\{s\}) & = & \alpha \\ m(\{s,t\}) & = & \left\{ \begin{array}{ll} \beta & \text{if } s,t \text{ are contiguous} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

 α can depend on the surface area of s β can depend on the length of the common border between s and t

Conclusion

• Our characterization depends on the interaction structure

Conclusion

- Our characterization depends on the interaction structure
- Our interactions are well-defined in terms of contiguity

Favored configuration with $\beta > 0$

Favored configuration with $\beta < 0$

Thank you for your attention

Comparing maps in a basic way Taking geographic aspects into account Taking contiguity into account

Modelling contiguity in spatial decision contexts

V. Brison, M. Pirlot

UMONS - Faculty of Engineering

June 9th, 2017